Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues

نویسندگان

  • Brian McDonagh
  • Pablo Martínez-Acedo
  • Jesús Vázquez
  • C. Alicia Padilla
  • David Sheehan
  • José Antonio Bárcena
چکیده

Cysteines are one of the most rarely used amino acids, but when conserved in proteins they often play critical roles in structure, function, or regulation. Reversible cysteine modifications allow for potential redox regulation of proteins. Traditional measurement of the relative absolute quantity of a protein between two samples is not always necessarily proportional to the activity of the protein. We propose application of iTRAQ reagents in combination with a previous thiol selection method to relatively quantify the redox state of cysteines both within and between samples in a single analysis. Our method allows for the identification of the proteins, identification of redox-sensitive cysteines within proteins, and quantification of the redox status of individual cysteine-containing peptides. As a proof of principle, we applied this technique to yeast alcohol dehydrogenase-1 exposed in vitro to H(2)O(2) and also in vivo to the complex proteome of the Gram-negative bacterium Bacillus subtilis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.

Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the ...

متن کامل

Identification of thioredoxin target protein networks in cardiac tissues of a transgenic mouse.

The advent of sensitive and robust quantitative proteomics techniques has been emerging as a vital tool for deciphering complex biological puzzles that would have been challenging to conventional molecular biology methods. The method here describes the use of two isotope labeling techniques-isobaric tags for relative and absolute quantification (iTRAQ) and redox isotope-coded affinity tags (ICA...

متن کامل

Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during a...

متن کامل

Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor.

NMDA receptor activity is modulated by various compounds, including sulfhydryl redox agents and Zn(2+). In addition to a slow and persistent component of redox modulation common to all NMDA receptors, NR1/NR2A receptors uniquely have a rapid and reversible component that has been variously attributed to redox or Zn(2+) effects. Here we show that this rapid modulatory effect can be described by ...

متن کامل

Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols.

An approach is described for identifying and quantifying oxidant-sensitive protein thiols using a cysteine-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, Foster City, CA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT reagent, and that mass spectrometry can be used to quantita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012